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Free surface and surface tension effects on submerged bodies 
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SUMMARY 

The Oseen problem for the steady motion of an object beneath a free surface with surface tension under the 
action of gravity is formulated. The Green's tensor for the problem is used to convert the boundary value 
problem to a coupled pair of integral equations for the stresses which the fluid exerts on the object. For the 
special case of a flat plate, these integral equations are analyzed asymptotically for small velocities and deep 
immersion. This yields a Fredholm equation of the second kind with Cauchy kernel, which has a well-known 
solution. The results indicate the effect of surface tension on the stress singularities at the edges of the plate, 
and modification of the lift and drag due to the free surface. 

1. Introduction 

The object of  this study is to investigate the effects of  a free surface and surface tension on a 

moving body immersed in a viscous fluid. There is an extensive literature on the subject of  

bodies moving in a fluid of  infinite extent,  but due to the mathematical difficulties involved, 

very little work has been done with the free surface case. The results most closely related to the 

present work were obtained by Dugan [1]. He treated the problem of  a point force moving 

under a free surface, which he then uses to obtain the equations pertinent to a submerged body,  

under the hypothesis of  negligible surface tension. Other results concern the lift and drag on 

objects with and without fluid injection (extraction) in fluids of  infinite extent.  These may be 

found in a survey article by Olmstead and Gautesen [2], together with an extensive bibliogra- 

phy. Viscous and surface tension effects of  a moving atmospheric disturbance were studied by 

Wu and Messick [3]. 

The approach of  the paper is to transform the Oseen equation problem together with 

linearized boundary conditions to a pair of  coupled integral equations for the stresses on an 

arbitrarily shaped two-dimensional body.  This is achieved by first obtaining the Green's tensor 

for the problem. One of the advantages of  this method is that the stresses on the body can be 

sought directly without having to solve for the velocity and pressure fields. When specialized to 

the case of  a flat plate, the integral equations are solved asymptotically under the assumption of  

large immersion depth and low flow velocities. The results can then be compared with those 

obtained for plates immersed in fluids of  infinite extent.  

2. Formulation of the problem 

We consider the steady two-dimensional flow of  a viscous incompressible fluid past a body 
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submerged a distance ~ b e l o w  the free surface. The coordinate system is chosen such that the 
x-axis corresponds to the undisturbed free surface. The domain occupied by the fluid will be 
denoted by ~2. The governing equations of the flow are taken to be the Navier-Stokes equations 

V " w=O,  

2Rw . V w = - V p  + Aw, (x,y)~ ~2. (2.1) 

The velocity w(x,y) = ui + vj has been normalized by the reference value Q, taken to be the 
minimum phase velocity for simple harmonic surface waves in a non-viscous medium, 

Q = (4gT/p) U4. (2.2) 

Here p is the fluid density, T the surface tension, and g the gravitational acceleration. The fluid 
viscosity will be denoted by/a. The Reynolds number R appearing in eq. (2.1) is given by 

R - p .~Q 2U ' (2.3) 

where the length scale.~is a characteristic length of the body and the factor 2 appears for 
convenience. For the boundary conditions on solutions of eq. (2.1) we require that the velocity 
and pressure assume the values for the uniform flow at infinity, 

UO ° 
W "+ - ~  1, p ~ 0 as x 2 + y2 ~ +0% (x,y) ~ a ,  (2.4) 

while on the body 

w = O on E, (2.5) 

i.e. no fluid penetrates the body and no slip between body and fluid. On the free surface, 
described by 

y = r/(x), (2.6) 

the tangential stress is continuous, while the normal stress has a jump proportional to the 
surface tension and mean curvature. For a Newtonian fluid, this yields [4] 

d• (3u 3v) I ( d ~ )  2] ( 3u a v )  
Tk-y Tx + I -  = o ,  

1 1 dr/ ~(~y Or) ~v d2r/ [1 (d r / )  2] -3/2 
- - ~ p + k n  2 dx +-~x + ~ y  = r - -  + dx 2 - ~  

(2.7) 

on y = n(x) .  
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The constants k = pg.~2/(2~Q) and r = T(2tIQ) are a Reynolds number and the non-dimen- 

sionalized surface tension respectively. The requirement that no fluid particle cross the free 
surface gives rise to the kinematic condition 

dr/ 
u ~ x  - v = 0  on y = r/(x). (2.8) 

For large immersion depth and low flow velocities, we expect the velocity and pressure 

fields to be well described by the Oseen equation together with the linearized boundary condi- 

tions known as the small amplitude approximation. More formally, by expanding the velocity 

and pressure fields in a small parameter, say e = - ~ / S ,  

UO o 
w =  -~- l+eW +o(c),  

p = eft+ o(c), (2.9) 

r/ = e ~ + o ( e ) ,  

one finds that, to order e, eq. (2.1), (2.4)-(2.8) may be replaced by 

V - w =  0, y < 0 ,  (2.10) 

0 
2R ~-x w = -  Vp+Aw,  y <  0, (2.11) 

w-+uoRi,  p ~ 0  as x2+yZ-++oo, y < 0 ,  (2.12) 

0u 0v 
0y + ~  = 0  on y =  0, (2.13) 

1 0p ( 82 0 2 ) 
- 2 O---x + k+ OxOy r - -  v = O  on y = O ,  (2.14) Ox 2 

dr/ v 
dx - u o R  o n y  = 0, (2.15) 

w = O on 2;. (2.16) 

The quantity Uo in eq. (2.11) is given by Uo = Uo/(RQ) and is supposed to be of order O(1) for 

small Reynolds number R. It may be pointed out that, as with the usual Oseen approximation, 
eqs. (2.9) cannot be a uniformly valid asymptotic approximation as long as the boundary 
condition w = O is envoked on the body. 
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3. The Green's tensor 

The Green's tensor Ei] for the system (2.10)-(2.16) may be obtained from the vector 

W(x,ylxo,Yo) = WI i + W2j satisfying the equations 

V - W = O ,  y < 0 ,  

a 
2R ~xx W = - V P + A W + f S ( x , y [ x o , Y o ) ,  Y<O, 

W ~ O ,  P ~  0 a s  X 2 +y2 _++,~, (3.1) 

/)W1 OW2 
Oy + ~ 0 o n y - - O ,  

1 aP [ ~2 
a-S + [ I ' +  - 

r I¢2=0 on y =  0. 

This system of equations describes the flow field induced by a point force 

f = r i  + Aj (3.2) 

located at some point (xo,Yo) within the fluid. For the special case f = i (i.e. P = 1, A = 0), W i 
reduces to the tensor component Eli, i e 11,2}. Similarly, the components E2i are obtained by 

setting f = j. The differential equations in system (3.1) admit the well-known Oseen solutions V 

= PV1 + AV2 and P = r'Pl + AP2 given by 

1 { . ~ - X o  [X-Xo  
V,(x,ylxo,Yo)= - "~n r2 - R  exp (g(x  - X o ) )  r KI(Rr) + Ko(Rr)It 

12rr {Y-YOr 2 Rexp(R(x-x° ) )  Y'-Y°r K, (Rr) t j, 

1 {Y -Yo 
V2(x,ylxo,Yo)=- ~ r2 

Y - Yo 
R exp (R (x - Xo)) 

f 
K! (Rr) } i 

1 Ix-x° [X-Xo 
+ ~ r 2 Rexp(R(x-xo))  r KI(Rr)-Ko(Rr)l t 

P1 (x,y I x o , Y o )  = 
R x - X o  

71" r 2 

P2 (x,y I xo,Yo) = 
R Y - Y o  
7]" / .2 

wherer 2 =(x  Xo) 2 + ( V - y o )  z. 
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It was shown by Olmstead [5] and Dugan [1] that a solution W, P of the system (3.1) may be 
obtained by distributing the Oseen solutions on the free surface: 

W(x,y IXo,Yo) = FV1 (x,y IXo ,Yo ) + AV2 (x,y txo,Yo ) 

y _ ?  , ,  , i + -  , ,  + d x ' V , ( x , y l x  ,y )o , (x  ) + dx 'V2(x ,y lx  ,y )o2(x'), 

P (x,y Ixo,Yo) = I-'P1 (x,y [xo,Yo) + AP2 (x,y Ixo,Yo) 

f + ~  f + ~  ¢ r P + dx'P, (x,y Ix',y')o, (x') + dx'P2 (x,y Ix ,y )o2 (x ) ,  
o o  - -  ~ 

(3.4) 

where the unknown functions ol (x), o2 (x) have to be determined from the remaining bounda- 
ry conditions in (3.1). Inspection of the integrals in (3.4) shows them to be convolutions. 
Substituting eq. (3.4) into (2.13) and (2.14) and Fourier transforming over the x variable, we 
obtain a coupled pair of  algebraic equations 

A, (co)O, (co) + A: (co)O: (co) = rA3 (co) + A &  (co), 

B1 (co)(~l ((D) + B 2 (co)(-~2 (co) = FB3 (co) + AB~ (co) 

for b~ (co) and 6z (co). The carets denote Fourier transforms and the coefficients are given by 

co - iR q 

(co - 2JR)l~ 2 J ' 

A 1(co) =R,  

A2(co) = (co + i0) 1/2 F(CO i0) 1/2 
L 

Aa(co) = i exp(icoxo) ( -co  exp(vo (co + i0)l/2(co - i0) 1/2) 

+ (co - iR)exp(yo (co + iO)U2(co - 2iR)1/2)}, 

A4(co) = exp(icoxo) (co + i0) 1/2 ~-(co - i0) l /2exp(yo (co + i0)l/2(co - i0) 1/2) 

c o - ~  exp(yo (co + i0)l/2(co 2iR) 1/2 }, 
(co -- 2iR) 1/2 

(60 - i 0 ) 1 / 2  ' 
BI (co) = ~- co(co +/0) 112 (w - 2/R) 1/2 

k + y(.o 2 
(W + i0) 1/2 

(3.5) 

1 

iO) Uz (co - , t_R B :  ( co )  = 5 co + 
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1 
B3 (60) = ~" exp(i60xo) 'Ilk + .;602 + i(60 - iR)  (60 + i0)1/2(60 - i0) 1/2 ] 

exp(.Vo (60 + i0)1/2(60 - iO) 112) 

- [k + r60 2 + i60(60 + i0) 1/2 ] exp(yo(60 + i0)1/2(60 - 2iR)1/2)} ,  

g 4 (60) = -~ e x p ( i 6 0 x p )  60(60 - iR)  - i (k  + r60 2) (60 + i0)1/2 7 
(60 - iO) 1 [2 .J 

exp(vo(60 + i0)1/2(60 -- i0) 1/2) 

[ _602 + i(~: + ~-60~) (60 + i°) ' (  = ] 2 /R ) , / 2 ) t  (60 _ 2iR)U2 1 exp(yo(60 + i0)1/2(60 - 

where the notation (60-i0) 1/2 , (60+i0) 1/2 is intended to keep track of the branch cuts which 
run along the positive and negative imaginary axis respectively. The cut for (60-2 iR)  1/2 is also 
taken along the imaginary axis. For R~e 0, system (3.5) may be solved for 61 (6o) and d2 (60), 

(3.7) 

( 3 . 8 )  

thereby obtaining the solution (3.4) of the Green's tensor problem in the form 

W(x,y  I xo,Yo) = PVl (x ,y  Ixo,Yo ) + AV2 (x ,y  Ixo,Yo) 

+ - Re  d60Ml(60,x,y[xo,Yo) + - -  R e  d60M2(60,x,y[xo,Yo),  

P ( x y  [xo,Yo) = PPI(x ,y  [XoYo) + AP2 (x,y [xo,Yo) 

+ - Re  d 6 0 N 1 ( 6 0 , x y l x o Y o ) +  A R e  d60N2(60,x,ylXo,Yo),  1T g 

where the integrals describe the free surface effects. The integrands are given by 

M~ =Meli +M~2j, £~ {12}, 

where 

Mn ~- exp(-i60(x-Xo)) exp(-ly +yol60) 1 - 2  60(60-iR)2] 
= -  D(60) ] 

601/2(60 _ 2iR)1[2 ] (60 _ 2iR)1/2 
I1 + 260 2 D(60) col/2 - e x p ( - l y  +Yo 1601/2(60 -2 iR)  112) 

601/2(60 _ 2iR)1/2 7 
+ exp(-ly160 - lYo 1601/2(60 - 2iR) 1/2) 260(60 - iR)  D(60) ] 
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+ exp( [Yo 166 -lY[66U2(w -2JR) 1/2) 

1 exp(-i66(x -Xo)) ~ exp(-ly M 1 2 - -  2 
t 

333 

[266(66 _ iR ) 661/2 (66 ~ 2iR )1/21 t 
D(66) _J 

+y6166)[1{_ -2  w(66D(66)- iR)2 ] 

661/2(66 _ 2iR)1/2 1 -exp(-ly+yo1661/2(66-2iR) U2) [1 +266 2 ~ - ( ~  ..] 

+ exp(-lY166 - lYo 1601/2(66 -- 2JR) 1/2) 

+ exp(-lYo 166 -lYlwl/2(66 -2 iR)  U2) 

1 e x p ( - i w ( x - x o ) )  exp(-ly +Yo166) 1 - 2  M21 = - T  D(66) ] 

[ 66,/z(66_ 2iR),/z 1 
exp(-ly +Yo 1661/2(66 - 2iR) 1/2) 1 + 26o 2 D(66) 3; 

+ exp(-lY166 lYo166U2(66 -2iR) U2) [266(66 -iR) c°Uz(66 -2iR)UZl 
D(66) 3 

+ exp(-lYo [66 - 1yl66112(66 -- 2iR)  1/2) [260 2 (66L)T66~- iR)]_jl 

i M2z - -  ~ exp(-iw(x - Xo)) l exp(-ly + yo'66) [ 1 - 2  66(66D-(w)-iR)21-j 

- exp(-ly +yol661/2(66 - 2iR) U2) [1 + 26o 2 

+ exp(-lY166 - [Yo 1661/2(66 - 2iR) 1/2) [266 2 

266 (co - iR)l 
J 

66,/2(66 _ 2iR),/~ l [2w(w-iR) ~- ( ; j  j }  

- 2 i m "  l 
D(66) J 

Nl 

l 
J 

~ 1 / 2  

(66 -- 2/R)I/2 

+ exp(-lyo Iw - lY166U2(w - 2iR) 1/2) 

f 
= iR exp(-iw(x - Xo)) ] exp(-Lv +Yo I~) 

+ exp( lYI~ - lYo Iwl/2(w - 2JR) U2) 

I 266 (66 - iR) 

co(66 - JR) 2 ] 

[266(66_iR) w'/2(66-2iR)'/2 ] ~  
D(66) 
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f 
N2 = R exp(-ieo (x - Xo)) J e x p ( - l y  leo) + Yo 

+ exp( -py  leo -.lYo leol/2(eo - 2iR) 1/z) 

where the denominator 

1 - 2 eo(eo - iR)2]  
D(eo) J 

IZeo (eo - iR) ] -b-(~ j } 

D(w) = R (k + rw 2) + co(eo - iR ) 2 - coz eoUz(w - 2 i R  ) 1/2 . 

The shape of  the surface wave is obtained from eq. (2.15): 

f; ~ exp(- ieoxo)  
r?(x) = 1 Re deo 

uoTr D(eo) 

, (3.9) 

(3.10) 

{exp(-Lvo leo) [ - ( w  - iR )F + i(eo - /R)A] 

+ exp ( - l yo  [ ~ l / 2 ( e o  _ 2 i R ) 1 / 2 )  [ 6 o l / 2 ( 6 o  _ 2iR)1/2 l ~ _ ieoA]}. (3.11) 

The special case of  zero surface tension was obtained by Dugan [1 ]. The limit as Yo tends to 0-  

describes a delta function stress on the free surface. The case of  a delta function pressure 

disturbance (P = 0 and A = - P o )  was obtained by Wu and Messick [3] by a different method, 
which provides a check on the analysis so far. 

4. The submerged plate 

By distributing point forces f(xo,Yo) = F(xo,Yo)i + A(xo,Yo)j along the body surface E, the 
Green's tensor may be used to express the velocity and pressure field for the submerged body 

problem (2.10)-(2.16) in terms of the unknown stresses on the body: 

w(x~y)=uoRi- f~ dsoP(Xo,Yo) ~Vl(Xylxo,Yo) 

_ 17r Re f o  ~ deoMl(W,xylxoYo)} 

('-a~: dsoA(xo,Yo) '{ Vz(xylxo,Yo)-  -~1 Re f o  ~ deoM2(eo,x,ylxoYo) } 

(4.1) 
1 

Re ~+Jo °~ deoNl(eo,x,ylxoYo)} p(xy)  = - fx  dsoF(Xo,Yo) { P l  ( x , y I x o , Y o )  - -  "~ 

f~ 1Re  fo+~ deoN2(eo,x,YlXoYo) } - dsoA(xo,Yo) { P2 (xylxo,Yo) - -~ 

Journal of Engineering Math., Vol. 13 (1979) 327-338 



Free surface and surface tension effects 335 

with the variables Xo, Yo parameterized by the arclength So. The corresponding surface wave is 

given by 

+ ~ exp(icoxo ) 
1 f x  d s ° F ( x ° y ° ) R e  f o  dco D(co) ~ ( x )  - U o ~  

[(co - iR)exp(- lYo Ico) 

- -  ( . d l / 2 ( 6 9  - -  2iR)U2exp(- lYo Iwa/2(co _ 2iR)U2)] 

1 - -  exp(iwx o) 
+ - -  F '~ d~  

f,~ dsoA(xo,Yo)Re d o  D ( w )  UO1T 
[-i(co - iR )exp(- lYo Ico) 

+ ico exp(-lyo I w U z ( w  - 2iR)UZ)]. 

Application of the remaining boundary conditions (2.16) on the body surface to equation (4.1) 
gives rise to a pair of coupled integral equations which may be solved for the stresses. 

In particular, for a plate of length 2-~immersed at a depth h = ~ Y i n  non-dimensional 
71 7r coordinates, and inclined at an angle - - ~ <  0 < 7  with respect to th,: x-axis, the resulting 

integral equations are 

1 

u ° R  = f -  1 R fo droP(to)  [ V u ( q  ,to) + - -  Re df2Mu(g2,t~ ,to)] 
7T 

0 

+ f l  - 1  

= f_' --1 

arm 

dtoA(to)  [V12(t, , to) + R Re f o  dg2M,2(f2,t, ,to)] 
7r 

d t o C ( t o ) l V z , ( t l , t o ) +  RTr Re f o  d~2Mzl (a , t , , to ) l  

(4.3) 

f_ l R f o  ~ + dtoA(to)  [V22(tl ,to) + --  Re d~M22(~ , t l  ,to)], 
--1 7r 

where the variables of integration are 

(a9 
~2- 

R " 

X i = t i COS 0, (4.4) 

Y i = t i s i n O - h ,  i~  {0,1}, 

so that the variables t i measure stress along the plate. The net stresses at some points to are given by 

r ( to)  = C +(Xo( to ),yo(to )) + V_(Xo(to),yo(to )), 

A(to) = a+(xo (to), y o (to)) + A _ ( x o  (to), Yo (to)), 
(4.5) 
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where ,the plus and minus sign indices refer to the upper and lower face of the plate respective- 
ly. The functions Vii(q,to), Mi/(tl ,to) are the components of the vectors Yi and M i of eq. (3.3) 
and (3.8) rewritten in the new variables. No explicit inverse for eq. (4.3) is known, but it is 
possible to do asymptotic expansions of the kernels for low Reynolds number flows and large 
immersion depth. By the method of steepest descents, only the critical point at the origin is 
found to contribute to the lowest order term for low values of the surface tension such that r "< 
1. The system of eq. (4.3) reduces to 

1 ( 2  ) ( 1) 
f_ dtoF(to)~nltl -tol=2nUo+ ~n ~ - 7 + c o s 2 0  D+ s i n 0 c o s 0 - ~  L 

1 

+ O(R £n R) + o((Rh)-2), 

( 1) 
f_  dtoA(to)gm It~ - to I = sin 0 cos 0 + 

1 

[ 2 
D + [~n ~ - 3' - cos20) L 

+ O(R £n R) + o((Rh)-2), 

(4.6) 

where D and L, the drag and lift exerted on the plate, are defined by 

1 1 

D= f_ dtoV(to), L= f_ dtoA(to) (4.7) 

respectively, and 3' = .577... is Euler's constant. Equations (4.6) are known as Carleman equa- 
tions. Their solution is given by 

r( t)= D (1 - t 2 )  -1/2 A(t)= L (1 - t2 )  -1/2, 
7r ' 7f 

(4.8) 

with 

D = 2rrUo 

4 
£n ~ -3 , -cosZO 

4 ) 2  cos 0 (~n .~ - + 
2 ' 

(4.9) 

L = 2 ~ o  

1 - s i n 0 c o s 0 -  - -  
2Rh 

4 ,)2 cos20 (~n ~ + 
2 " 

In the limit as the immersion depth goes to infinity, these expressions reduce to 
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Doo = 2rrUo 

Loo = 27rUo 

4 

~n ~ -3,  - cos20 

4 7 ) 2 cosZ0 @n /~ - 

- sin 0 cos 0 
4 2 

(Qn /~ - ' ) ' )  -- COS20 

(4.10) 

which are identical to those given in Olmstead and Gautesen [ 1 ] for the forces experienced by a 
flat plate moving in a fluid of infinite entent. 

For surface tension in the range 1 ~ r ~ kR -2, with r 3 "~ kh 2 , additional terms appear in 
the asymptotic expansions of eq. (4.3). These now become 

_ldtoP(to) ~nltl - to l -27r  R~oSo2 H(h - t o )  =-2~rUo+ ~n ~, - 7 + c o s Z0  D 

( 1) 
+ sin0 cos0 - ~ L +O(R £nR)+o((Rh)-Z,k(Ro)-2), 

f l  [ k H ( t l - t o ) ]  = ( s i n 0 c o s 0 +  1 ) (4.11) -ldt°A(t°) ~nltl -tol-2rr RZo2 ~ D 

(2  ) 
+ Qn ~ - 3 ' - c o s Z 0  L+O(R~nR)+o((Rh)-2,k(Ro)-2),  

with solution 

47rz____k2 ) -1/2 
F ( t ) : D  7r z + (RT.)~- (1 - t )  P(1 +t)  p-1 , 

47r2k 2 ) - 1 / 2  
A( t )=L  7r 2 + (Rr) 4 (1 - t ) - P ( 1  +t)  p 1 (4.12) 

1 R2r 2 
- a r c t a n -  P= 7r 2k 

The lift and drag are given by 

D = 27rUo 

2 ~n ~ + c - 3 , - c o s 2 0  

( 2 ) 2  (1) 
~n _~ + c - 7  cosZ0 + 

2 ' 

(4.13) 
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L = 27ruo 

1 
- sin 0 cos 0 - - -  

2Rh 
2 2 

c = - 7 - - ~ n 2 - ~ ( p ) ,  

where ff is the digamma function. 

2 , 

5. Conclusion 

Comparing eqs. (4.9) and (4.10), we see that the drag in a semi-infinite fluid in the low 

Reynolds number regime is less than the drag for an infinite fluid. This would indicate that the 

energy stored in the surface wave is less than the energy stored in the additional fluid above the 

curve corresponding to the free surface when the fluid is infinite. This is the opposite of  the 

results for the high Reynolds number regime, where the drag in the semi-infinite fluid is known 

to be larger than the drag in the infinite fluid. 

We also see that the lift is enhanced by the presence of  the free surface. This can be 

explained as a tendency of  the fluid to pass underneath the body rather than between the body 

and the free surface. 

In the large surface tension case, the character of  the singularities at the edges of  the plate 

are altered, the singularity at the leading edge becoming more pronounced compared to the low 

surface tension, while the stress at the trailing edge becomes correspondingly less singular. 

The Green's function method used is readily extended to the case of  a body capable of  

injecting or extracting fluid from its surroundings. The results are similar to the expressions 

obtained above and reduce to the infinite fluid results given in [2] in the limit of  infinite 

immersion depth. 
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